4 research outputs found

    Inverted Diamond-shaped Notched Substrate and Patch for High-frequency Interference on Ultra-wideband Antenna

    Get PDF
    Notches loaded on a patch antenna can affect significantly on ‎the antenna impedance matching. Therefore, notching technique is an efficient way to reduce ‎the electromagnetic interference with unwanted bands. In this paper, a ‎novel inverted diamond‏-‏shaped closed-end slot on a substrate and ‎vertex-fed printed hexagonal patch ultra‏-‏wideband antenna is proposed for high-frequency band rejection. This antenna is fed using ‎coplanar waveguide, and it is optimised by veering several patch ‎parameters which further improved the inter bandwidth at both the ‎lower and upper bands. However, the centre-notched band is shifted ‎from 6 GHz to 7.5 GHz by cutting the inverted diamond shape in a ‎special process. The developed ultra-wideband antenna is verified by ‎comparing the simulation results with the measurement results. The ‎measured results with a fractional bandwidth of 133% have a good ‎agreement with the simulation results 146%. Moreover, the measured radiation showed omnidirectional patterns‎

    Performance of Non-Uniform Duty-Cycled ContikiMAC in Wireless Sensor Networks

    Get PDF
    Wireless Sensor Network (WSN) is a promising technology in Internet of Things (IoTs) because it can be implemented in many applications. However, a main drawback of WSN is it has limited energy because each sensor node is powered using batteries. Therefore, duty-cycle mechanisms are introduced to reduce power consumption of the sensor nodes by ensuring the sensor nodes in the sleep mode almost of the time in order to prolong the network lifetime. One of the de-facto standard of duty-cycle mechanism in WSN is ContikiMAC, which is the default duty-cycle mechanism in Contiki OS. ContikiMAC ensures nodes can participate in network communication yet keep it in sleep mode for roughly 99\% of the time. However, it is found that the ContikiMAC does not perform well in dynamic network conditions. In a bursty network, ContikiMAC provides a poor performance in term of packet delivery ratio, which is caused by congestion. One possible solution is ContikiMAC should increase its duty-cycle rate in order to support the bursty traffic. This solution creates a non-uniform duty-cycle rates among the sensor nodes in the network. This work aims to investigate the effect of non-uniform duty-cycle rates on the performance on ContikiMAC. Cooja simulator is selected as the simulation tool. Three different simulation scenarios are considered depending on the Clear Channel Assessment Rate (CCR) configurations: a low uniform CCR value (Low-CCR), a high uniform CCR value (High-CCR) and non-uniform CCR values (Non-uniform-CCR). The simulation results show that the Low-CCR scenario provides the worst performance of PDR. On the other hand, the High-CCR scenario provides the best performance of PDR. The Non-uniform-CCR provides PDR in between of Low-CCR and High-CCR

    Symmetrical couple f-shaped notches with high rejection c-band of uwb patch antenna

    Get PDF
    The ultra-wideband (UWB) antenna is developed to cover a broad bandwidth. ‎The UWB radio systems are interfered ‎by the ‎same ‎spectrum ‎that shared with the local bands. In this paper, two F-shaped slots on a hexagonal patch UWB antenna are demonstrated ‎‎ to realize a high band rejection. The symmetrical couple F-slots is ‎notched on the hexagonal UWB ‎ ‎patch antenna to avoid the interference ‎and ‎‎enhance the notching results at C-band. The demonstrated ‎antenna employs a coplanar waveguide ‎(CPW) technique to meet a fractional bandwidth of 126%. The proposed method validates ‎several ‎‎reconfigurations of the F-slot location on the demonstrated design. Six steps ‎parametric study are considered to test the slots location. The results of the proposed antenna with slots are introduced based on analytical, simulation, and ‎measurement. The total design size ‎‎28 mm × 43 mm × 1.6 ‎mm is simulated by ‎using CST Microwave Studio. The two F-slots are achieved the antenna gain of -6 dB, ‎return loss of -1.2 ‎dB, and ‎VSWR of 15.2 at the rejected band of 4 GHz. The ‎measurement results are compared with the simulation results between the three ‎prototypes. The current ‎distribution on the design is discussed at 2.88 GHz and 4 GHz frequencies. The radiation patterns illustrate ‎omnidirectional of H-plane and bidirectional of E-plane. This paper validates the slots locations to enhance the notches performance and reduce the interference

    A survey on recent approaches of electromagnetic absorption reduction with respect to human head exposure to GSM frequency bands

    No full text
    The cellular phone usage has been growing dramatically over the last decade and became a crucial part of our life. One of the key components of mobile phone is the antenna that receives and transmits electromagnetic (EM) energy. The safety of human head exposure of electromagnetic (EM) waves emitted from cell phones has attracted public concern. A comprehensive review of recent approaches and techniques of electromagnetic absorption reduction over GSM bands are presented in this paper. Protection attachments between the antenna and the human head were proposed by many researchers. These distinct techniques have been classified in to 4 categories including the use of ferrite sheet, perfect electric conductor (PEC), electromagnetic band gap (EBG) structure and metamaterials. Few good papers were reviewed and evaluated in each group for proof of concept. Finally, a comparison between these techniques was done
    corecore